If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+5x-31=0
a = 8; b = 5; c = -31;
Δ = b2-4ac
Δ = 52-4·8·(-31)
Δ = 1017
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1017}=\sqrt{9*113}=\sqrt{9}*\sqrt{113}=3\sqrt{113}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3\sqrt{113}}{2*8}=\frac{-5-3\sqrt{113}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3\sqrt{113}}{2*8}=\frac{-5+3\sqrt{113}}{16} $
| V=(18-2x)(12-2x)x | | 8+3x=6x-20 | | 2/3(12x-9)=5x-48 | | 5-x/4=1 | | w/34=w–12 | | -4x-3(2-x)=3x+6 | | 22=1x | | 3(r+1.6)−8r=9.4 | | 3z+3z-6=0 | | 2^x-3=8^5x | | 8-12x=7x-4 | | 2(9x)=72 | | 2(y+3)=3(y-1) | | -8(x-3)=40 | | (2y-3)^2+25=0 | | 5÷7=35÷(y+1) | | -x^2+15x=73-3x | | 13=2w-9 | | (5x-67)=107 | | 5x=174 | | S(16-s)=32 | | -1(y+4)=-6 | | S(12-s)=30 | | 7m-6m=2 | | (y/2-26)*3=18 | | 4n-5=-4n+19 | | 0=4x2+10x+1 | | y/2-263=18 | | 5x+3+79=180 | | 2(2x+7)+8=2+2x | | 5x+3+11x-30=79 | | 11=-44+b |